主要功能:
具体应用场景:
这类数据非常适合用于机器学习训练,特别是预测性维护和故障预警:
# 特征工程示例
features = [
'active_power', # 有功功率异常
'reactive_power', # 无功功率波动
'current_a/b/c', # 三相电流不平衡
'voltage_uab/ubc/uca', # 电压异常
'power_factor', # 功率因数
'current_trend', # 电流变化趋势
'voltage_stability' # 电压稳定性指标
]
target = 'will_trip_in_next_hours' # 未来几小时是否跳闸
从你的数据可以提取:
(max(Ia,Ib,Ic) - min(Ia,Ib,Ic)) / avg(Ia,Ib,Ic)cos(φ) = P / √(P² + Q²)为了更好地用于ML训练,建议在你的解析程序中添加特征工程:
def calculate_features(self, data):
"""计算衍生特征"""
features = data.copy()
# 三相不平衡度
if all(x is not None for x in [data['current_a'], data['current_b'], data['current_c']]):
currents = [data['current_a'], data['current_b'], data['current_c']]
features['current_imbalance'] = (max(currents) - min(currents)) / (sum(currents)/3)
# 功率因数
if data['active_power'] and data['reactive_power']:
p, q = data['active_power'], data['reactive_power']
features['power_factor'] = abs(p) / (p*p + q*q)**0.5
# 电压不平衡度
if all(x is not None for x in [data['voltage_uab'], data['voltage_ubc'], data['voltage_uca']]):
voltages = [data['voltage_uab'], data['voltage_ubc'], data['voltage_uca']]
features['voltage_imbalance'] = (max(voltages) - min(voltages)) / (sum(voltages)/3)
return features
注意到你的数据中有质量码字段,这对ML训练很重要:
这类电力数据的ML应用在工业界已经相当成熟,可以显著提高电网的可靠性和运维效率。你的数据包含了丰富的电气参数,很适合构建预测性维护模型。